Is there an Aoki phase in quenched QCD?

Maarten Golterman, Stephen R. Sharpe, Bob Singleton

Outline

- Motivations and background
- Generalizing unquenched analysis [Sharpe & Singleton] to quenched theory
 - Field theoretic description of quenched Wilson fermions
 - Symmetries of quenched theory
 - Effective continuum Lagrangian (up to $O(a^2)$)
 - Effective chiral Lagrangian (up to $O(a^2)$)
 - Vacuum for $N_c \to \infty$
 - Generalization for $N_c = 3$?
- Summary

Aoki phase with unquenched Wilson fermions

- Region B is Aoki phase
- $\langle i\bar{q}\gamma_5\tau_3q\rangle \neq 0$
- Flavor and parity broken
- Massless Goldstone Bosons (π^{\pm})
- Non-zero density of near-zero eigenmodes of $H_W = \gamma_5 (D + m_0 + W)$:
- $\rho(0) \propto \langle i\bar{q}\gamma_5\tau_3q \rangle \neq 0$

Can understand using Wilson χ PT[Creutz,Sharpe & Singleton]

- Condensate swings from $\Sigma = 1 \ (m > 0)$ to $\Sigma = -1 \ (m < 0)$
- Occurs when $m_{
 m phys} \sim a^2 \Lambda_{
 m QCD}^3$

As $N_c \to \infty$, same analysis applies for a single flavor

- $\rho(0) \propto \langle \bar{q}i\gamma_5 q \rangle \neq 0$
- NO GB's SINCE NO CONTINUOUS LATTICE SYM. BROKEN

Why we care about the quenched Aoki phase

- Theoretical interest
- Explain results of numerical simulations
 - phase structure as in unquenched theory [Aoki et al, ...]
 - ho(0)
 eq 0 throughout supercritical region $-8 < m_0 a < 0$ [Edwards et al]
- DWF/Overlap use "quenched" $H_W(m_0 \sim -1)$ as a kernel
 - Density of extended near-zero modes leads to loss of chiral symmetry for DWF, and of locality for Overlap fermions [Golterman & Shamir]
 - ⇒ need to be far away from any Aoki phase

Conjecture for quenched QCD [Golterman & Shamir]

- BBN-like [Berruto *et al*] dislocations with size $\ell \sim a$ peppered throughout supercritical region . . .
 - Explains $\rho(0) \neq 0$
 - Eigenmodes are LOCALIZED so DWF/Overlap OK
 - Goldstone's theorem evaded by $\langle P^+(x)P^-(y)\rangle \propto 1/m_{tw}$
- ... except if there is an Aoki phase in which:
 - $\rho(0) \neq 0$ due to delocalized modes: $\ell \geq \Lambda_{\rm QCD}^{-1}$
 - Goldstone's theorem satisfied in usual way
- Only expect χ PT analysis to be sensitive to long-distance contributions to condensate and $\rho(0)$

Step 1: define quenched theory

Lattice Lagrangian for quarks (we consider N=1 or 2 flavors)

$$\mathcal{L}_q = \bar{q}(D + M_0 + W)q$$

Following [Morel] add ghosts to cancel determinant

$$\mathcal{L}_g = \tilde{q}^{\dagger} (D + M_0 + W) \tilde{q}$$

Problem: In supercritical region $D+M_0+W$ has NEGATIVE eigenvalues \Rightarrow Ghost functional integral not defined

Solution: change variables before quenching (non-anomalous):

$$q = \exp(\pm i(\pi/4)\gamma_5)q',$$
 $\bar{q} = \bar{q}' \exp(\pm i(\pi/4)\gamma_5)$
 $\bar{q}(D + M_0 + W)q = \bar{q}'(D \pm i\gamma_5[M_0 + W])q'$

Fermion matrix now antihermitian, eigenvalues imaginary

Step 1: continued

Rotated lattice Lagrangian for quarks

$$\mathcal{L}_q = \bar{q}'(D \pm i\gamma_5[M_0 + W])q'$$

Now add ghosts, with convergence term

$$\mathcal{L}_g = \tilde{q}^{\dagger} (D \pm i \gamma_5 [M_0 + W]) \tilde{q} + \epsilon \tilde{q}^{\dagger} \tilde{q}$$

- $\epsilon > 0$ regulates zero modes
- Assume can take $\epsilon \to 0$, since ignoring localized zero modes

Also include "convergence term" also in quark sector:

$$\Delta \mathcal{L}_q = \epsilon \bar{q}' q' = \mp \bar{q} i \gamma_5 q$$

- Selects direction of condensate in Aoki phase
- Direction can be chosen independently for each favor

Step 2: determine symmetry group [Damgaard et al]

Collect components into chiral "super fields"

$$\Psi_{L,R} = \begin{pmatrix} q_{L,R} \\ \tilde{q}_{L,R} \end{pmatrix}, \ \gamma_5 \Psi_{L,R} = \pm \Psi_{L,R}, \ \overline{\Psi}_{L,R} = \begin{pmatrix} \overline{q}_{L,R}, & \tilde{q}_{R,L}^{\dagger} \end{pmatrix}, \ (\overline{\Psi}_{L,R}) \gamma_5 = \mp (\overline{\Psi}_{L,R})$$

Full Lagrangian in chiral form:

$$\mathcal{L}_{W} = \overline{\Psi}_{L} D \Psi_{L} + \overline{\Psi}_{R} D \Psi_{R} + \overline{\Psi}_{R} \underbrace{\left[\pm i (M_{0} + W) - \epsilon\right]}_{\mathcal{M}} \Psi_{L} + \overline{\Psi}_{L} \underbrace{\left[\mp i (M_{0} + W) - \epsilon\right]}_{\overline{\mathcal{M}}} \Psi_{R}$$

- $\overline{\Psi}_L|_g = \Psi_R|_g^{\dagger}$ required for convergence
- Symmetry group must maintain this relation for "bodies" of fields

Graded symmetry group (N is number of flavors)

$$\Psi_{L,R} \to \mathcal{V}_{L,R} \Psi_{L,R}, \ \overline{\Psi}_{L,R} \to \overline{\Psi}_{L,R} \mathcal{V}_{L,R}^{-1}, \ \mathcal{M} \to \mathcal{V}_R \mathcal{M} \mathcal{V}_L^{-1}, \ \overline{\mathcal{M}} \to \mathcal{V}_L \overline{\mathcal{M}} \mathcal{V}_R^{-1}$$

•
$$\mathcal{G} = \{ (\mathcal{V}_L, \mathcal{V}_R) \in [SL(N|N)_L \times SL(N|N)_R] \ltimes U(1)_V | \mathcal{V}_{Lgg}|_{body} = \mathcal{V}_{Rgg}^{\dagger - 1}|_{body} \}$$
.

Step 3: determine continuum \mathcal{L}_{eff} [Symanzik]

Enforce lattice symmetries (including discrete) ⇒

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{glue} + \overline{\Psi}(D \pm i\gamma_5 m + \epsilon)\Psi \pm a\overline{\Psi}b_1 i\gamma_5 i\sigma_{\mu\nu} F_{\mu\nu}\Psi + O(a^2),$$

- Physical mass $m = Z_m(M_0 m_c)$
- $\epsilon \to Z_P \epsilon$
- Unknown coefficient b₁
- Same form as for unquenched Wilson fermions except for $\pm i\gamma_5$ due to axial rotation
- $O(a^2)$ terms break no further symmetries
- $D \pm i\gamma_5 m \mp \gamma_5 \sigma_{\mu\nu} F_{\mu\nu}$ is antihermitian, like the underlying lattice operator

Step 4: determine chiral \mathcal{L}_{eff}

Assume (based on numerical evidence) a non-vanishing (long distance) condensate, with corresponding Goldstone fields:

$$\Sigma \sim \langle \Psi_L \overline{\Psi}_R \rangle \longrightarrow \mathcal{V}_L \Sigma \mathcal{V}_R^{-1}, \ \Sigma^{-1} \sim \langle \Psi_R \overline{\Psi}_L \rangle \longrightarrow \mathcal{V}_R \Sigma \mathcal{V}_L^{-1}$$

Since quenched must keep singlet part Φ₀

$$\Sigma = \exp(\Phi), \ \Phi_0 = -i \operatorname{str}(\Phi)$$

Symmetry group is G, but transformations enlarged to:

$$\mathcal{G}' = \{ (\mathcal{V}_L, \mathcal{V}_R) \in GL(N|N)_L \times GL(N|N)_R \mid \mathcal{V}_{Lgg}|_{\text{body}} = \mathcal{V}_{Rgg}^{\dagger - 1}|_{\text{body}} \},$$

• Thus $\Sigma \in GL(N|N)$ with contraint:

$$\Phi = \begin{pmatrix} i\phi_1 + \phi_2 & \overline{\chi} \\ \chi & \hat{\phi} \end{pmatrix}, \quad \hat{\phi}^{\dagger}|_{\text{body}} = \hat{\phi}|_{\text{body}}$$

• Keep only ϕ_1 in quark sector (called ϕ below)

Step 4: (continued)

Treat $\mathcal{M},\overline{\mathcal{M}}$ as spurions, then set $\overline{\mathcal{M}}=\mathcal{M}^{\dagger}=\pm im+\epsilon$:

$$\mathcal{L}_{\chi} = \frac{f^{2}}{8} V_{1}(\Phi_{0}^{2}) \operatorname{str} \left(\partial_{\mu} \Sigma \partial_{\mu} \Sigma^{-1} \right) + \frac{c_{0}}{2} \Phi_{0}^{2}$$

$$\mp i c_{1} \operatorname{str} \left(\Sigma - \Sigma^{-1} \right) - \epsilon \operatorname{str} \left(\Sigma + \Sigma^{-1} \right)$$

$$+ c_{2} \left[\left(\operatorname{str} \Sigma \right)^{2} + \left(\operatorname{str} \Sigma^{-1} \right)^{2} \right] + c_{3} \operatorname{str} \Sigma \operatorname{str} \Sigma^{-1} + c_{4} \left[\operatorname{str} \left(\Sigma^{2} \right) + \operatorname{str} \left(\Sigma^{-2} \right) \right]$$

- Keep up to quadratic order in a and m in potential
 - $f, c_0 \sim \Lambda_{\rm QCD}$
 - $c_1 \sim m + a$
 - $c_{2,3,4} \sim m^2 + am + a^2$
- Quenching triples number of quadratic terms
- Quenching implies c_i are functions of Φ_0^2
- Potential simplifies in large N_c limit:
 - $f^2, c_1, c_4 \propto N_c$
 - $c_{0,2,3} \propto 1$
 - Can drop Φ_0 dependence of c_i

Step 5: Aoki phase in large N_c limit

- Useful limit since quark and ghosts decouple, and quark sector is unquenched.
- In quark sector, minimize potential

$$\mathcal{V}_q = \mp i c_1 \operatorname{str} \left(\Sigma - \Sigma^{-1} \right) - \epsilon \operatorname{str} \left(\Sigma + \Sigma^{-1} \right) + c_4 \left[\operatorname{str} \left(\Sigma^2 \right) + \operatorname{str} \left(\Sigma^{-2} \right) \right]$$

- Interesting regime: $c_1 \sim m + a = m' \sim c_4 \sim a^2 \gg \epsilon$
- Consider $c_4 < 0$ since leads to Aoki phase.
- Single quark flavor: $\Sigma = \exp(i\phi)$

$$\mathcal{V}_{\chi} = \pm 2c_1 \sin \phi + 2c_4 \cos(2\phi) - 2\epsilon \cos \phi$$

- $4|c_4| \le c_1 \Rightarrow \phi = \mp \pi/2, \Sigma = \mp i$
- $c_1 \leq -4|c_4| \Rightarrow \phi = \pm \pi/2 \text{ or } \mp 3\pi/2, \Sigma = \pm i$
- $-4|c_4| \le c_1 \le 4|c_4| \Rightarrow \phi$ interpolates through $\phi = 0$, $\Sigma = 1$ (direction determined by ϵ term)
- In original variables q, condensate interpolates from +1 to -1 through Aoki phase with $\pm \langle \overline{q}i\gamma_5q\rangle > 0$ (as expected)
- Thus long-distance contribution to ho(0) non-zero, although **NO GB**'s

Step 5: ghosts in large N_c limit

- Expect $\langle q \bar{q} \rangle = \langle \tilde{q} \tilde{q}^{\dagger} \rangle$ unless graded symmetry broken
- However $\Sigma_g = \exp(\hat{\phi})$ with $\hat{\phi}$ real: how can $\Sigma_g = \Sigma_g$ when latter is complex?
- Technical problem: Potential in ghost sector is unbounded below, and complex

$$\mathcal{V}_q = \pm 2ic_1 \sinh \hat{\phi} - 2c_4 \cosh(2\hat{\phi}) + 2\epsilon \cosh \hat{\phi}$$

"Solutions":

- Need higher order terms when $|\hat{\phi}| > 1$ (unlike for ϕ), so we do not know about boundedness
- Assume that effective theory is sensible and integral over $\hat{\phi}$ converges at $\hat{\phi} \to \pm \infty$
- "Minimize potential" really means "find saddle points" in integral over $\hat{\phi}$
- Need to deform contour into complex $\hat{\phi}$ plane
- Choose saddle with maximum $\Re \mathcal{V}_g$ (minimum $|\exp(-\mathcal{V}_g)|$), that can join onto $\hat{\phi} \to \pm \infty$

Step 5: large N_c ghost (continued)

• "Potential" in ghost sector ($\Sigma_g = \exp(\hat{\phi})$):

$$\mathcal{V}_g = \pm 2ic_1 \sinh \hat{\phi} - 2c_4 \cosh(2\hat{\phi}) + 2\epsilon \cosh \hat{\phi}$$

• Saddle point equation ($\epsilon \to 0$):

$$\pm ic_1 \cosh \hat{\phi} = 2c_4 \sinh(2\hat{\phi})$$

- Saddles are at:
 - $\hat{\phi}_A = \mp i\pi/2, \pm 3i\pi/2, \ldots$ (note: imaginary)
 - $\hat{\phi}_B = \pm i\pi/2, \mp 3i\pi/2, \dots$
 - $\hat{\phi}_C$, which, for $|c_1| < 4|c_4|$, interpolates between saddles A and B, e.g. $\hat{\phi}_C = \pm i \sin^{-1}(c_1/4c_4)$
- ullet Key result: maximizing $\Re V_g$ (including ϵ) chooses saddle such that $\Sigma_g=\Sigma_q$
- ullet Steepest descent from saddles is in direction of real $\hat{\phi}$
- ⇒ Do get Aoki phase in ghost sector

Final Step: What happens at $N_c = 3$?

- Consider one-favor case (adequate for condensate since N independent)
- Values of c_1 and c_4 depend on N_c
- Potential now couples quark and ghost sectors

$$\Delta \mathcal{V}_{\chi} = \frac{c_0}{2} \Phi_0^2 + c_2 \left[(\operatorname{str} \Sigma)^2 + (\operatorname{str} \Sigma^{-1})^2 \right] + c_3 \operatorname{str} \Sigma \operatorname{str} \Sigma^{-1}$$

- $c_0 \sim \Lambda_{\rm QCD} \gg c_{1-4} \sim a^2$
- Does c_0 dominate at $N_c = 3$?
 - NO: in quenched $\chi {\rm PT} \; \Phi_0^2$ term changes single to double poles, but does not shift masses
 - $\Rightarrow \Phi_0$ should not affect choice of saddles
 - Expect same to hold for c_2 and c_3 terms, which have two straces
- Does this work mathematically? In part:
 - Previous saddles (which have $\Phi_0 = 0$) remain solutions
 - But all have $V_q + V_g = 0$, so how distinguish?

 We have argued that there is an Aoki phase in the quenched theory, with properties similar to those in the unquenched theory

- We have argued that there is an Aoki phase in the quenched theory, with properties similar to those in the unquenched theory
- In quenched theory with N=2, form of condensate depends on source. Can have (in terms of the original lattice fields before axial rotation)
 - $\langle \overline{q}i\gamma_5\tau_3q\rangle \neq 0$ with 2 Goldstone bosons
 - $\langle \overline{q}i\gamma_5q\rangle \neq 0$ with NO Goldstone bosons (no flavor breaking)

- We have argued that there is an Aoki phase in the quenched theory, with properties similar to those in the unquenched theory
- In quenched theory with N=2, form of condensate depends on source. Can have (in terms of the original lattice fields before axial rotation)
 - $\langle \overline{q}i\gamma_5\tau_3q\rangle \neq 0$ with 2 Goldstone bosons
 - $\langle \overline{q}i\gamma_5q\rangle \neq 0$ with NO Goldstone bosons (no flavor breaking)
- The same two options are also available in unquenched theory at large N_c , although for N_c non-infinite flavor breaking condensate is favored

- We have argued that there is an Aoki phase in the quenched theory, with properties similar to those in the unquenched theory
- In quenched theory with N=2, form of condensate depends on source. Can have (in terms of the original lattice fields before axial rotation)
 - $\langle \overline{q}i\gamma_5\tau_3q\rangle \neq 0$ with 2 Goldstone bosons
 - $\langle \overline{q}i\gamma_5q\rangle \neq 0$ with NO Goldstone bosons (no flavor breaking)
- The same two options are also available in unquenched theory at large N_c , although for N_c non-infinite flavor breaking condensate is favored
- DWF/Overlap kernels need to take care to avoid the Aoki phases

- We have argued that there is an Aoki phase in the quenched theory, with properties similar to those in the unquenched theory
- In quenched theory with N=2, form of condensate depends on source. Can have (in terms of the original lattice fields before axial rotation)
 - $\langle \overline{q}i\gamma_5\tau_3q\rangle \neq 0$ with 2 Goldstone bosons
 - $\langle \overline{q}i\gamma_5q\rangle \neq 0$ with NO Goldstone bosons (no flavor breaking)
- The same two options are also available in unquenched theory at large N_c , although for N_c non-infinite flavor breaking condensate is favored
- DWF/Overlap kernels need to take care to avoid the Aoki phases
- Would be nice to tighten up parts of the argument . . . !